The Idle Effect – Saving 10% – 40% On Fuel Everyday
Torque Converter Operational Phases
Author: zee001
For the purposes of explanation, a torque converter can be considered to have three stages of operation:
* Stall. The prime mover is applying power to the pump but the turbine cannot rotate. For example, in an automobile, this stage of operation would occur when the driver has placed the transmission in gear but is preventing the vehicle from moving by continuing to apply the brakes. At stall, the torque converter can produce maximum torque multiplication if sufficient input power is applied (the resulting multiplication is called the stall ratio). The stall phase actually lasts for a brief period when the load (e.g., vehicle) initially starts to move, as there will be a very large difference between pump and turbine speed.
* Acceleration. The load is accelerating but there still is a relatively large difference between pump and turbine speed. Under this condition, the converter will produce torque multiplication that is less than what could be achieved under stall conditions. The amount of multiplication will depend upon the actual difference between pump and turbine speed, as well as various other design factors.
* Coupling. The turbine has reached approximately 90 percent of the speed of the pump. Torque multiplication has ceased and the torque converter is behaving in a manner similar to a fluid coupling. In modern automotive applications, it is usually at this stage of operation where the lock-up clutch is applied, a procedure that tends to improve fuel efficiency.
The key to the torque converter’s ability to multiply torque lies in the stator. In the classic fluid coupling design, periods of high slippage cause the fluid flow returning from the turbine to the pump to oppose the direction of pump rotation, leading to a significant loss of efficiency and the generation of considerable waste heat. Under the same condition in a torque converter, the returning fluid will be redirected by the stator so that it aids the rotation of the pump, instead of impeding it. The result is that much of the energy in the returning fluid is recovered and added to the energy being applied by the pump itself. This action causes a substantial increase in the mass of fluid being directed to the turbine, producing an increase in output torque. Since the returning fluid is initially traveling in a direction opposite to pump rotation, the stator will likewise attempt to counter-rotate as it forces the fluid to change direction, an effect that is resisted by the one-way stator clutch.
Unlike the radially straight blades used in a fluid coupling, a torque converter’s turbine and stator use angled and curved blades. The blade shape of the stator is what alters the path of the fluid, forcing it to coincide with the pump rotation. The matching curve of the turbine blades helps to correctly direct the returning fluid to the stator so the latter can do its job. The shape of the blades represents a bit of a black art in converter design, as minor variations can result in significant changes to the converter’s performance.
During the stall and acceleration phases, in which torque multiplication occurs, the stator remains stationary due to the action of its one-way clutch. However, as the torque converter approaches the coupling phase, the energy and volume of the fluid returning from the turbine will gradually decrease, causing pressure on the stator likewise decrease. Once in the coupling phase, the returning fluid will reverse direction and now rotate in the direction of the pump and turbine, an effect which will attempt to forward-rotate the stator. At this point, the stator clutch will release and the pump, turbine and stator will all (more or less) turn as a unit.
Unavoidably, some of the fluid’s kinetic energy will be lost due to friction and turbulence, causing the converter to waste heat (dissipated in many applications by water cooling). This effect, often referred to as pumping loss, will be most pronounced at or near stall conditions. In modern designs, the blade geometry minimizes oil velocity at low pump speeds, which allows the turbine to be stalled with the engine at idle speed for long periods with little danger of overheating.
Article Source: http://www.articlesbase.com/automotive-articles/torque-converter-operational-phases-142778.html
About the Author